Abstract

The Cache Conflict Analysis Tool takes memory access traces from
an instrumented program and runs them through a cache simulator,
tracking which data structures conflict with each other. We will use
the results of the tool to perform automatic cache conscious data
placement, resulting in increased program performance.

Background

e [ he cache location of a data structure is dependent on its loca-
tion In main memory.

e The layout of data (both static and dynamic) in main memory
can dramatically affect cache performance due to conflicts, and
can adversely affect performance of an application.

e Compilers typically do not take cache conflict behavior into ac-
count when creating an executable, nor does the memory subsys-

tem or operating system at time of execution.

e By analyzing cache behavior with this tool, hopefully more opti-
mal data placement can be achieved.

Below is an example of how in a direct mapped 4k cache with a 32 byte blocksize, every 4096th byte in main memory
will map to the same area of cache. So if you have two data structures in use at the same time that are 4096 bytes

apart, both will not fit in the cache at the same time and performance will be adversely affected.

Diagram of a Conflict Miss
Pseudo-code of a Conflict Miss ©

Allocate A[512] (allocated at offset 0) Main Memory
Allocate B[512] (allocated at offset 4096) 0
1 Cache
2 \ 0
Loop i=0..N 3 1
Loop j=0..511 g
Ali|=Al]+B]] 4096 i
4097 |
Without conflicts, A and B should be in the jggg

cache after the first access. Due to conflicts,
each access causes a miss.
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Below are some results from running different benchmarks through
the tool, with a simulated cache configuration similar to that of a

Pentium 4 (8K 4-way 64byte L1, 512K 8-way 64byte L2)

equake from the spec2k benchmarks
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FIGURE 1: Conflicts by size in the L1
Cache. The biggest peak is that of 24-
byte allocations (corresponding to an ar-
ray of 3 doubles) kicking each other out
of the cache.

Accesses

Conflict Caused by Size 32
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FIGURE 2: Accesses, both total and
those causing misses, for offsets in the 24-
byte allocations (plus 8 bytes of padding
added by the system’s malloc() routine).

smg2k from the ASCI Purple Benchmarks

Conflict by Size L1
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FIGURE 3: Conflicts by size in the L1
Cache. The biggest peaks here are from
large allocations (bigger than the cache
size) causing capacity misses.
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FIGURE 4: Accesses, both total and
those causing misses, for offsets in the
272-byte allocations. The large gap of un-
used space in the middle might open op-
portunities for better cache placement.
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e Implement automatic cache-conscious data placement:

+ by hand through code organization

+ automatically at runtime via customized memory management

+ using hardware remapping mechanisms (such as IMPULSE)

e Enable instrumentation by atom or valgrind in addition to FIT.
e Instrument more benchmarks.




